Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel
One gene lost, one limb regained?
The Wistar Institute demonstrate that mice that lack the p21 gene gain the ability to regenerate lost or damaged tissue.
Scientists from the Wistar Institute have identified a single gene that prevents regeneration in mammals.

A quest that began over a decade ago with a chance observation has reached a milestone: the identification of a gene that may regulate regeneration in mammals. In a recent report, researchers from The Wistar Institute demonstrate that mice that lack the p21 gene gain the ability to regenerate lost or damaged tissue. The absence of this single gene, called p21, confers a healing potential in mice long thought to have been lost through evolution and reserved for creatures like flatworms, sponges, and some species of salamander.

Unlike typical mammals, which heal wounds by forming a scar, these mice begin by forming a blastema, a structure associated with rapid cell growth and de-differentiation as seen in amphibians. According to the Wistar researchers, the loss of p21 causes the cells of these mice to behave more like embryonic stem cells than adult mammalian with rapid cell growth
While we are just beginning to understand the repercussions of these findings, perhaps, one day we’ll be able to accelerate healing in humans
and de-differentiation as seen in amphibians. According to the Wistar researchers, the loss of p21 causes the cells of these mice to behave more like embryonic stem cells than adult mammalian cells, and their findings provide solid evidence to link tissue regeneration to the control of cell division.

“Much like a newt that has lost a limb, these mice will replace missing or damaged tissue with healthy tissue that lacks any sign of scarring,” said the project’s lead scientist Ellen Heber-Katz, Ph.D., a professor in Wistar’s Molecular and Cellular Oncogenesis program. “While we are just beginning to understand the repercussions of these findings, perhaps, one day we’ll be able to accelerate healing in humans by temporarily inactivating the p21 gene.”

Become a member or log in to add this story to your CPD history

Survey launched to investigate EHV

News Story 1
 Zoetis has launched a new survey to identify management techniques for Equine Herpes Virus (EHV).

EHV is a contagious, airborne virus that can cause respiratory problems and severe diseases in horses and ponies. It spreads among horses over short distances, direct contact and through shared equipment.

The survey will explore current knowledge and management practices with EHV in the UK. It is quick to complete and participants could win one of 10 equine first aid kits.

Complete the survey here

Click here for more...
News Shorts
WSAVA launches pet travel guidance factsheet

A new pet travel guidance factsheet for veterinary professionals and caregivers has been developed by the WSAVA in collaboration with the World Veterinary Association.

The Dog and Cat Welfare During Transport factsheet provides step-by-step guidance for all stages of a journey, from pre-travel checklists to post-travel care.

Brachycephalic breeds or animals prone to travel-related anxiety are given special focus in this guide, which also provides links to IATA container regulation and WSAVA vaccination guidelines.